분류 전체보기 37

[토이프로젝트] 설문지 응답 검출 프로그램 제작 (with Python)

설문지 응답 검출 프로그램 제작(with Python) ~ 목차 ~1. 개요 1.1 기간 1.2 TASK 1.3 문제점 1.4 목표2. 데이터 2.1 구성 2.2 특징3. 프로세스4. 이슈와 해결방법 4.1 bbox 위치·크기 설정의 애매함 4.2 응답 색의 다양함 4.3 과하게 연한 응답 존재5. 결과6. 회고 1. 개요 1.1 기간 - 총 3일 (24.7.30. - 24.8.1.) 1.2 TASK - 학과 대학원 연구실에서 설문지로 진행한 설문조사의 응답을 전산상에 입력해야 했다. 1.3 문제점 - 기존에는 응답 데이터를 사람이 수기로 입력했는데, 문항에 비례하여 시간이 소요된다는 단점이 있었다. 1.4 목표 - 시간을 절약하기 위해 설문지에서 응답..

[논문 속 수학] Adam과 관련된 최적화 방법들(RMSProp, AdaGrad)

Adam과 관련된 최적화 방법들(RMSProp, AdaGrad) Adam 논문의 section 5에 있는 AdaGrad의 수식이 그냥 보니 잘 이해가 안 돼서 하나하나 짚고 넘어가고자 한다.Section 5에서는 Adam과 관련된 최적화 방법들을 설명한다.  그리 길지 않으니 이참에 section 전체를 해석하면서 수식도 정리해보겠다.   ~ 목차 ~1. 관련된 최적화 방법들  1.1 RMSProp  1.2 AdaGrad 1. 관련된 최적화 방법들 - Adam과 직접적으로 관련이 있는 최적화 방법은 RMSProp과 AdaGrad이다. - 이 외에 Stochastic한 최적화 방법으로는 vSGD, AdaDelta, Natural Newton Method 가 있고, 이들은 모두   기울기 정보(first-o..

Paper Review 2024.11.09

[기본이론] 최적화 방법6- Adam (수식o)

최적화 방법6- Adam앞에서 RMSProp까지 정리했다. 이어서 Adam에 대해서 정리하려고 한다. ~ 목차 ~0. 서론- 왜 갑자기 최적화를 공부하고 있는가1. 최적화란2. 종류  2.1 경사하강법(GD)  2.2 확률적 경사하강법(SGD)  2.3 Momentum  2.4 AdaGrad  2.5 RMSProp  2.6 Adam  2. 종류   2.6 Adam- Adam은 Adaptive Moment Estimation의 약자로, ①Momentum의 장점과 ②RMSProp의 장점을 결합한 방법이다.    ① Momentum의 장점: 기울기 방향성 보존(안정성)    - Momentum의 기본 수식은 $v \leftarrow \alpha v - \eta \frac{\partial L}{\partial ..

[영어] 토익 950 후기

토익 950 후기- 오늘 토익 점수가 발표나서 토익 후기를 간단히 적어보려고 한다. ~ 목차 ~1. 응시이유 / 목표2. 베이스3. 공부 방법4. 문제풀이 순서5. 공부 / 시험 팁1. 응시이유 / 목표  - 대학원 진학(공학계열)을 염두에 두고 어학성적을 만들기 위해 응시했다.  - 850 이상을 목표로 했고, 다른 공부도 할 게 많았기 때문에 최소한의 시간을 투자하고자 했다. 2. 베이스  - 3년 전 토익 905점, 2년 전 토스 AL  - 올해 초에 1달 동안 미국 초등학교로 교생실습을 다녀왔다.  - 최근에 영어 논문을 계속 읽어와서 영어가 익숙했다. 3. 공부 방법  - 부담스러운 목표는 아니었기 때문에 실전 감각을 기르는 데에 초점을 뒀다.  - 오른쪽의 기출문제집으로 공부했다.  - 시험 ..

[기본이론] 최적화 방법5- RMSProp (수식o, 그래프o)

최적화 방법5- RMSProp앞에서 모멘텀(Momentum)까지 정리했다. 이어서 RMSProp에 대해서 정리하려고 한다. ~ 목차 ~0. 서론- 왜 갑자기 최적화를 공부하고 있는가1. 최적화란2. 종류  2.1 경사하강법(GD)  2.2 확률적 경사하강법(SGD)  2.3 Momentum  2.4 AdaGrad  2.5 RMSProp  2.6 Adam  2. 종류   -AdaGrad의 단점(학습이 진행될수록 기울기 제곱값이 누적되어 학습률이 작아짐)을 개선하기 위해 RMSProp이 제안되었다.  2.5 RMSProp  - RMSProp은 Root Mean Square Propagation의 줄임말로, 기울기 제곱의 지수 이동 평균을 사용해서 학습률을 조절하는 방법이다. (c.f. 지수 이동 평균: 최근..

[운영체제] 프로세스

프로세스책 『면접을 위한 CS 전공지식 노트』를 바탕으로 스터디를 진행하면서 공부한 내용을 정리했다. ~ 목차 ~1. 프로세스란2. 프로세스와 컴파일 과정  2.1 인터프리터와 컴파일러  2.2 컴파일러를 사용하는 이유  2.3 컴파일러의 컴파일 과정3. 프로세스의 상태4. 프로세스의 메모리 구조  4.1 동적 영역  4.2 정적 영역5. PCB  1. 프로세스란  - 프로세스(process)란 프로그램을 실행하기 위해서 메모리에 올린 상태이다.    (+ 프로그램은 정적인 상태이고 프로세스는 동적인 상태이다.) 2. 프로세스와 컴파일 과정  2.1 인터프리터와 컴파일러  - 프로그램을 실행하려면 고급언어로 작성한 소스코드를 기계어로 번역해야 하는데,    이때 사용되는 방법으로는 대표적으로 인터프리터(..

CS 2024.11.05

[기본이론] 최적화 방법4- AdaGrad (수식o)

최적화 방법4- AdaGrad앞에서 모멘텀(Momentum)까지 정리했다. 이어서 AdaGrad에 대해서 정리하려고 한다. ~ 목차 ~0. 서론- 왜 갑자기 최적화를 공부하고 있는가1. 최적화란2. 종류  2.1 경사하강법(GD)  2.2 확률적 경사하강법(SGD)  2.3 Momentum  2.4 AdaGrad  2.5 RMSProp  2.6 Adam 2. 종류   2.4 AdaGrad  - AdaGrad는 Adaptive Gradient의 줄임말로, 기울기 제곱의 누적합을 사용해서 학습률을 조절(자주 업데이트되면 학습률 감소, 드물게 업데이트되면 학습률 유지)하는 방법이다.   - 이 역시 수식으로 설명해보고자 한다. AdaGrad의 가중치 매개변수 업데이트 공식은 아래와 같다. $h \leftarr..

[기본이론] 최적화 방법3- Momentum (수식o)

최적화 방법3- Momentum앞에서 확률적 경사하강법(SGD)까지 정리했다. 이어서 모멘텀(Momentum)에 대해서 정리하려고 한다. ~ 목차 ~0. 서론- 왜 갑자기 최적화를 공부하고 있는가1. 최적화란2. 종류  2.1 경사하강법(GD)  2.2 확률적 경사하강법(SGD)  2.3 Momentum  2.4 AdaGrad  2.5 RMSProp  2.6 Adam3. 정리 2. 종류   2.3 Momentum  - 모멘텀(Momentum)은 운동량이라는 뜻으로, 이전의 이동방향을 계속 유지하려고 하는 성질, 즉 관성을 뜻한다. 최적화에서는 이러한 느낌을 살려서 가중치 매개변수를 갱신할 때 이전 기울기를 일부 반영하면서 현재 기울기에 따라 새로운 방향으로 이동하도록 만든다.  - 모멘텀을 도입하면 SG..

[기본이론] 최적화 방법2- Stochastic Gradient Descent (수식o)

최적화 방법2- Stochastic Gradient Descent앞에서 경사하강법(GD)까지 정리했다. 이어서 확률적 경사하강법(SGD)에 대해서 정리하려고 한다. ~ 목차 ~0. 서론- 왜 갑자기 최적화를 공부하고 있는가1. 최적화란2. 종류  2.1 경사하강법(GD)  2.2 확률적 경사하강법(SGD)  2.3 Momentum  2.4 AdaGrad  2.5 RMSProp  2.6 Adam3. 정리 2. 종류   2.2 확률적 경사하강법(SGD)  - Stochastic Gradient Descent, SGD  - Stochastic의 의미: 데이터를 무작위로 골라냈다는 뜻  - 기본 아이디어는 GD와 비슷하다. 데이터 추출 방식을 바꾼 것 뿐이다. GD는 1번 이동할 때 모든 데이터를 사용해서 $w..

[기본이론] 최적화 방법1- Gradient Descent (수식o)

최적화 방법1- Gradient Descent ~ 목차 ~0. 서론- 왜 갑자기 최적화를 공부하고 있는가1. 최적화란2. 종류  2.1 경사하강법(GD)  2.2 확률적 경사하강법(SGD)  2.3 Momentum  2.4 AdaGrad  2.5 RMSProp  2.6 Adam3. 정리 0. 서론- 왜 갑자기 최적화를 공부하고 있는가- 논문들을 읽으면서 기본기가 부족하다는 것이 다시 느껴졌다. 최적화에 대해서 정확히 알지 못했다. 내가 아는 것은.. 최적화가 기울기를 이용해서 손실함수를 최소로 하는 방법이고, 종류로는 SGD, Adam이 있지만 최근에는 대부분 Adam을 사용한다는 정도 뿐이었다. 그래서 든든한 기본서 『밑바닥부터 시작하는 딥러닝』을 다시 꺼내들었다.- 읽으면서 최적화 갱신 경로 부분이 ..