Paper Review 11

[논문리뷰] "End-to-End Learning for Self-Driving Cars" (2016)

"End-to-End Learning for Self-Driving Cars" (2016) https://arxiv.org/pdf/1604.07316 ~ 목차 ~1. Introduction2. Overview of the DAVE-2 System3. Data Collection4. Network Architecture5. Training Details    5.1 Data Selection    5.2 Augmentation6. Simulation7. Evaluation    7.1 Simulation Tests    7.2 On-road Tests    7.3 Visualization of Internal CNN State8. Conclusions 1. Introduction이 글은 CNN의 혁신성과..

Paper Review/3D 2025.01.16

[논문리뷰] "Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite" (2012)

"Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite" (2012) https://www.cvlibs.net/publications/Geiger2012CVPR.pdf~ 목차 ~ 1. Introduction2. Challenges and Methodology    2.1 Sensors and Data Acquisition    2.2 Sensor Calibration        2.2.1 Camera-to-Camera calibration        2.2.2 Velodyne-to-Camera calibration        2.2.3 GPS/IMU-to-Velodyne calibration    2.3 Ground Truth ..

Paper Review/3D 2025.01.13

[논문리뷰] Total Capture: A 3D Deformation Model for Tracking Faces, Hands, and Bodies

~ 목차 ~1. Introduction2. Related Work3. Frank Model    3.1 Stitching Part Models    3.2 Body Model    3.3 Face Model    3.4 Hand Model4. Motion Capture with Frank    4.1 3D Measurements    4.2 Objective Function5. Creating Adam    5.1 Fitting Clothes and Hair    5.2 Detection Target Regression    5.3 Building the Shape Deformation Space    5.4 Tracking with Adam6. Results    6.1 Quantitative Eval..

Paper Review/3D 2025.01.11

[논문리뷰] Deep Residual Learning for Image Recognition (ResNet)

ResNet 논문리뷰이번 논문리뷰는 ResNet 논문이다 [1].(K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-778.) 논문 제목은 Deep Residual Learning for Image Recognition이다.   ~ 목차 ~0. Abstract1. Introduction2. 관련 연구3. Deep Residual Learning  3.1 Residual Learning  3.2 Identity Mapping ..

Paper Review/CNN 2024.11.15

[논문리뷰] Very Deep Convolutional Networks for Large-Scale Image Recognition (VGGNet)

VGGNet 논문리뷰이번 논문리뷰는 VGGNet 논문이다 [1].(K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," Proc. Int. Conf. on Learning Representations (ICLR), 2015.) 논문 제목은 Very Deep Convolutional Networks for Large-Scale Image Recognition이다. (+ VGG는 옥스퍼트 대학교의  연구그룹 Visual Geometry Group에서 나온 이름이다.) ~ 목차 ~0. Abstract1. Introduction2. ConvNet 구성  2.1 구조  2.2 구성  2.3..

Paper Review/CNN 2024.11.13

[논문리뷰] Imagenet classification with deep convolutional neural networks (AlexNet)

AlexNet 논문리뷰첫 논문리뷰는 바로 AlexNet 논문이다 [1].(A. Krizhevsky, I. Sutskever, and G. Hinton, "Imagenet classification with deep convolutional neural networks," in Advances in Neural Information Processing Systems (NIPS), vol. 25, 2012.) 논문 제목은 Imagenet classification with deep convolutional neural networks이다.  ~ 목차 ~0. Abstract1. Introduction2. 데이터  2.1 구성  2.2 전처리방법3. 모델 구조  3.1 ReLU   3.2 멀티 GPU 사용  3..

Paper Review/CNN 2024.11.12