최적화 방법5- RMSProp앞에서 모멘텀(Momentum)까지 정리했다. 이어서 RMSProp에 대해서 정리하려고 한다. ~ 목차 ~0. 서론- 왜 갑자기 최적화를 공부하고 있는가1. 최적화란2. 종류 2.1 경사하강법(GD) 2.2 확률적 경사하강법(SGD) 2.3 Momentum 2.4 AdaGrad 2.5 RMSProp 2.6 Adam 2. 종류 -AdaGrad의 단점(학습이 진행될수록 기울기 제곱값이 누적되어 학습률이 작아짐)을 개선하기 위해 RMSProp이 제안되었다. 2.5 RMSProp - RMSProp은 Root Mean Square Propagation의 줄임말로, 기울기 제곱의 지수 이동 평균을 사용해서 학습률을 조절하는 방법이다. (c.f. 지수 이동 평균: 최근..